发布时间:2025-01-11 02:05:50 来源: sp20250111
新华社伦敦4月29日电(记者 郭爽)美国和中国研究人员近日在英国《自然》杂志上发表论文说,他们在托卡马克核聚变实验中取得突破性进展,不仅提高了等离子体密度上限,同时可使等离子体保持高约束模式的稳态运行。新研究将受控核聚变技术向着商业化方向又推进一步,但能否推广到更大规模的设备上仍有待验证。
受控核聚变技术有望为人类提供近乎无限的清洁能源,帮助人类摆脱对化石燃料的依赖。托卡马克反应堆是一种利用磁约束来实现受控核聚变的环形装置,被认为是利用核聚变发电的反应堆中最有前景的设计之一。在托卡马克反应堆内,氢的同位素氘和氚被加热到超高温度以产生等离子体,强磁场将高温等离子体约束在环形管道中,使其发生聚变反应。
英国《新科学家》杂志报道说,通常认为,在托卡马克核聚变反应中存在一个等离子体密度临界点,即“格林沃尔德极限”。实验表明,增加等离子体的密度可以提高能量产出。然而当等离子体密度达到“格林沃尔德极限”后将无法进一步提升,否则等离子体就会逃脱磁场约束,造成反应堆损坏。
在最新研究中,美国通用原子公司、劳伦斯利弗莫尔国家实验室和中国科学院等离子体物理研究所等机构参与的团队成功让美国杜布莱特III-D托卡马克核聚变实验装置在等离子体平均密度比“格林沃尔德极限”提高20%的情况下,稳定运行了2.2秒;同时还实现了能量约束水平比标准的高约束模式高出约50%。
据报道,研究人员尝试将已有的不同方法结合起来,创造出一种新的运行机制。他们通过提高“甜甜圈”形状等离子体的核心部位密度来增加能量输出,同时允许等离子体密度在靠近安全壳的边缘下降,从而避免等离子体逃逸。他们还向等离子体中注入氘气,以平息特定部位的反应。
研究人员指出,该运行机制可以支持世界上现有核聚变反应堆设计中的一些关键要求,并为生产具有经济吸引力的聚变能源开辟了一条潜在途径。
(责编:林凡巽、姜洁)